Part Number Hot Search : 
67BZI RT2N07M 0EVAL 2407S HC404 1N5225B Y60NK30Z TDA7294V
Product Description
Full Text Search
 

To Download GA400TD60U Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 50059D
GA400TD60U
"HALF-BRIDGE" IGBT DUAL INT-A-PAK
Features
* Generation 4 IGBT technology * UltraFast: Optimized for high operating frequencies 8-40 kHz in hard switching, >200 kHz in resonant mode * Very low conduction and switching losses * HEXFREDTM antiparallel diodes with ultra- soft recovery * Industry standard package * UL approved
Ultra-FastTM Speed IGBT
VCES = 600V VCE(on) typ. = 1.70V
@VGE = 15V, IC = 400A
Benefits
* Increased operating efficiency * Direct mounting to heatsink * Performance optimized for power conversion: UPS, SMPS, Welding * Lower EMI, requires less snubbing
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C ICM ILM IFM VGE VISOL PD @ TC = 25C PD @ TC = 85C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector CurrentQ Peak Switching CurrentR Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range
Max.
600 400 800 800 800 20 2500 1250 650 -40 to +150 -40 to +125
Units
V A
V W C
Thermal / Mechanical Characteristics
Parameter
RJC RJC RCS Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink S Mounting Torque, Case-to-Terminal 1, 2 & 3S Weight of Module
Typ.
-- -- 0.1 -- -- 400
Max.
0.10 0.20 -- 6.0 5.0 --
Units
C/W N. m g
www.irf.com
1
05/15/02
GA400TD60U
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)CES VCE(on) VGE(th) VGE(th)/TJ gfe ICES VFM IGES Parameter Collector-to-Emitter Breakdown Voltage Collector-to-Emitter Voltage Min. Typ. Max. Units Conditions 600 -- -- VGE = 0V, IC = 1mA -- 1.7 2.4 VGE = 15V, IC = 400A -- 1.8 -- V VGE = 15V, IC = 400A, TJ = 125C Gate Threshold Voltage 3.0 -- 6.0 IC = 2.5mA Temperature Coeff. of Threshold Voltage -- -11 -- mV/C VCE = VGE, IC = 2.5mA Forward Transconductance T -- 481 -- S VCE = 25V, I C = 400A Collector-to-Emitter Leaking Current -- -- 2.0 mA VGE = 0V, VCE = 600V -- -- 20 VGE = 0V, VCE = 600V, TJ = 125C Diode Forward Voltage - Maximum -- 3.7 -- V IF = 400A, VGE = 0V -- 3.6 -- IF = 400A, VGE = 0V, TJ = 125C Gate-to-Emitter Leakage Current -- -- 500 nA VGE = 20V
Dynamic Characteristics - TJ = 125C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff (1) Ets (1) Cies Coes Cres trr Irr Qrr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. 1806 251 612 1033 335 688 225 26 48 74 40136 2509 522 232 141 16292 1641 Max. Units Conditions 2709 VCC = 400V 376 nC IC = 270A ,VGE = 15V 918 TJ = 25C -- RG1 = 15, RG2 = 0, -- ns IC = 400A -- VCC = 360V -- VGE = 15V -- mJ -- 89 -- VGE = 0V -- pF VCC = 30V -- = 1 MHz -- ns IC = 400A -- A RG1 = 15 -- nC RG2 = 0 -- A/s VCC = 360V di/dt=1300A/s
2
www.irf.com
GA400TD60U
250
For both:
200
LOAD CURRENT (A)
D uty cy cle: 50% TJ = 125C T s ink = 90C G ate drive as specified
P ow e r Dis sip ation = 175 W
150
S q u a re w a v e : 60 % of ra ted vo ltag e
100
I
50
Id e a l d io d e s
0 0.1 1 10 100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
1000
I C , Collector-to-Emitter Current (A)
TJ = 125 C
I C , Collector-to-Emitter Current (A)
TJ = 25 C
T = 125 C J
100
100
TJ = 25 C
10
10 1.0
V = 15V 80s PULSE WIDTH
GE 1.5 2.0 2.5 3.0
1 5.0
V = 25V 80s PULSE WIDTH
CE 6.0 7.0 8.0 9.0
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
GA400TD60U
500 3.0
VCE , Collector-to-Emitter Voltage(V)
V = 15V 80 us PULSE WIDTH
GE
Maximum DC Collector Current(A)
IC = 800 A
400
300
2.0
200
IC = 400 A
100
IC = 200 A
0 25 50 75 100 125 150
TC , Case Temperature ( C)
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
1
T herm al R es pons e (Zth JC )
0.1 D = 0 .50 0.20 0 .10 0.01 0 .05 0 .02 0.01 SIN G L E P UL SE (T H ER M A L R ES PO N S E)
P DM
t
1 t2
Notes: 1. Duty factor D = t
1 / t2
0.001 0.0001
2. Peak TJ = PDM x Z thJC + TC
A
1000
0.001
0.01
0.1
1
10
100
t 1 , R ecta ngula r Pulse D u ration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
GA400TD60U
80000
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
60000
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 270A
16
Cies
40000
12
C oes
20000
8
C res
4
0 1 10 100
0 0 400 800 1200 1600 2000
VCE , Collector-to-Emitter Voltage (V)
Q G , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
120
Total Switching Losses (mJ)
100
Total Switching Losses (mJ)
V CC = 360V V GE = 15V TJ = 125 C I C = 400A
1000
RG1=15;R G2 = 0 G = Ohm VGE = 15V VCC = 360V
IC = 800 A
100
80
IC = 400 A IC = 200 A
60
40 0 10 20 30 40 50
( RG , Gate Resistance (Ohm) )
10 -60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
GA400TD60U
200
IC , Collector-to-Emitter Current ( A )
Total Switching Losses (mJ)
RG =15;RG2 = 0 G1 = Ohm T J = 125 C VCC = 360V 160 VGE = 15V
1000
V G E = 20V T J = 125C
VCE measured at terminal (Peak Voltage)
800
120
600
SAFE O PERATING AREA
400
80
40
200
0 0 200 400 600 800
0 0 200 400 600
A
800
I C , Collector-to-emitter Current (A)
VCE , Collector-to-E mitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
1000
Fig. 12 - Reverse Bias SOA
30000
Instantaneous Forward Current - IF ( A )
I F = 80 0A I F = 4 00 A I F = 200 A
20000
100
TJ = 125C TJ = 25C
QRR - ( nC)
10000
VR = 3 6 0 V TJ = 1 2 5 C T J = 2 5 C
10 0.0 2.0 4.0 6.0
0 500
1000
1500
2000
Fo rw ard V o lta g e D ro p - V FM (V )
dif/dt - (A/s)
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
Fig. 14 - Typical Stored Charge vs. dif/dt
6
www.irf.com
GA400TD60U
400 250
I F = 8 00 A I F = 4 00 A
300 200
I F = 2 00 A
I F = 80 0A I F = 4 00 A I F = 2 00 A
trr - ( ns )
200
IRRM - ( A )
150
100
100 50
VR = 3 6 0 V T J = 1 2 5 C T J = 2 5 C
0 500 1000 1500 2000 0 500 1000
VR = 3 6 0V TJ = 1 25 C TJ = 2 5C
1500
2000
dif/dt - (A/s)
dif/dt - (A/s)
Fig. 15 - Typical Reverse Recovery vs. dif/dt
Fig. 16 - Typical Recovery Current vs. dif/dt
www.irf.com
7
GA400TD60U
90% Vge +Vge
Vce
Ic
10% Vce Ic
9 0 % Ic 5 % Ic
td (o ff)
tf
Eoff =
Vce Ic dt
t1 + 5 S V c e ic d t t1
Fig. 17a - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1 t2
Fig. 17b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
trr id ddt Ic t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr V cc
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 Vce d E o n = V ce ieIc t dt t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
E re c =
t4 V d idIc t dt Vd d t3
t1
Fig. 17c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
Fig. 17d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
GA400TD60U
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 17e. Macro Waveforms for Figure 18a's Test Circuit
L 1000V 50V 6000 F 100 V Vc*
D.U.T.
RL= 0 - 480V
480V 4 X IC @25C
Figure 18. Clamped Inductive Load Test Circuit
Figure 19. Pulsed Collector Current Test Circuit
www.irf.com
9
GA400TD60U
Notes:
Q Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature.
R See fig. 17 S For screws M6. T Pulse width 50s; single shot.
Case Outline -- DUAL INT-A-PAK
107.30 106.30 3X M6 8 [.314] MAX. 4.185] [4.224 93.30 3.673 92.70 [3.650] 28.60 2X 27.40 1.079] [1.126 4X 6.60 5.40 11 10 48.30 47.70 6 7 1 2 3 5 4 2X 15.59 14.39 .567] [.614 4X FAST ON T AB (110) 2.8 x 0.5 [.110 x .020] 6.80 4X O 6.20 .244] [.267 48.50 47.50 1.870] [1.909 8.00 6.60 .260] [.315 31.00 29.60 5.50 4.50 1.165] [1.220 .213] [.260 NOT ES : 1. ALL DIMENSIONS ARE S HOWN IN MILLIMET ERS [INCHES]. 2. CONT ROLLING DIMENSION: MILLIMET ER.
[
1.902 1.878] 8 9
[
.217 .177]
24.00 23.00
.906] [.945 2.303] [2.343 62.70 2.468 61.70 [2.429] 59.50 58.50
0.15 [.0059] CONVEX 104.50 103.50 4.075] [4.114
Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/02
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of GA400TD60U

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X